Mazor Robotics Spinal Deformity Correction Planning Software FDA Cleared

Picture: Mazor Robotics

Mazor Robotics Ltd. has received FDA clearance for its Mazor X Align™ software. Mazor X Align is designed to assist surgeons in planning spinal deformity correction and spinal alignment for procedures performed with the Mazor X Surgical Assurance Platform. The new software will be demonstrated during exhibit hours at the 2017 American Association of Neurological Surgeons (AANS) Annual Scientific Meeting in Los Angeles, CA, April 22-26.

Mazor X Align leverages Mazor Robotics’ extensive experience in pre-operative planning, image processing, computerized anatomy recognition, and registration of different imaging modalities. It is the latest module to be added to the Mazor X proprietary Pre-operative Analytics software suite, and enables surgeons to create a patient-specific, three-dimensional spinal alignment plan. The 3D plan simulates an entire spine, allowing pre-operative estimation of the impact of a planned surgical correction on the patient’s posture post-operatively, considering segmental range-of-motion and final alignment parameters.

According to Ori Hadomi, CEO of Mazor Robotics, “Mazor X Align is the product of Mazor’s development program and represents our innovative pipeline and visionary team experience. We are dedicated to pushing the envelope bringing to the market advanced products and applications in order to benefit an increasing number of patients suffering from difficult conditions and supporting the medical professionals serving them.”

Mazor X Align will be released to a selection of Mazor X customers in early May. This early release will be followed by a widespread release during the second half of 2017.

How 3D printing could save lives

Photo: University of California San Diego

In the past decade, engineers at the University of California San Diego have 3D printed a variety of devices ranging from rocket engines, to robots, to structures inspired by the seahorse’s tail. Now, nanoengineers have added a new item to that list: a 3D printed biomimetic blood vessel network.

The new research, led by nanoengineering professor Shaochen Chen, addresses one of the biggest challenges in tissue engineering: creating lifelike tissues and organs with functioning vasculature — networks of blood vessels that can transport blood, nutrients, waste and other biological materials — and do so safely when implanted inside the body.

Researchers from other labs have used different 3D printing technologies to create artificial blood vessels. But existing technologies are slow, costly and mainly produce simple structures, such as a single blood vessel — a tube, basically. These blood vessels also are not capable of integrating with the body’s own vascular system.

“Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply,” said Chen, who leads the Nanobiomaterials, Bioprinting, and Tissue Engineering Lab at UC San Diego. “3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal.”

Chen’s lab has 3D printed a vasculature network that can safely integrate with the body’s own network to circulate blood. These blood vessels branch out into many series of smaller vessels, similar to the blood vessel structures found in the body.

Chen’s team developed an innovative bioprinting technology, using their own homemade 3D printers, to rapidly produce intricate 3D microstructures that mimic the sophisticated designs and functions of biological tissues. Chen’s lab has used this technology in the past to create liver tissue and microscopic fish that can swim in the body to detect and remove toxins.

Researchers first create a 3D model of the biological structure on a computer. The computer then transfers 2D snapshots of the model to millions of microscopic-sized mirrors, which are each digitally controlled to project patterns of UV light in the form of these snapshots. The UV patterns are shined onto a solution containing live cells and light-sensitive polymers that solidify upon exposure to UV light. The structure is rapidly printed one layer at a time, in a continuous fashion, creating a 3D solid polymer scaffold encapsulating live cells that will grow and become biological tissue.

“We can directly print detailed microvasculature structures in extremely high resolution. Other 3D printing technologies produce the equivalent of ‘pixelated’ structures in comparison and usually require sacrificial materials and additional steps to create the vessels,” said Wei Zhu, a postdoctoral scholar in Chen’s lab and a lead researcher on the project.

And this entire process takes just a few seconds — a vast improvement over competing bioprinting methods, which normally take hours just to print simple structures. The process also uses materials that are inexpensive and biocompatible.

Chen’s team used medical imaging to create a digital pattern of a blood vessel network found in the body. Using their technology, they printed a structure containing endothelial cells, which are cells that form the inner lining of blood vessels.

The entire structure fits onto a small area measuring 4 millimeters × 5 millimeters, 600 micrometers thick (as thick as a stack containing 12 strands of human hair).

Reearchers cultured several structures in vitro for one day, then grafted the resulting tissues into skin wounds of mice. After two weeks, the researchers examined the implants and found that they had successfully grown into and merged with the host blood vessel network, allowing blood to circulate normally.

Chen noted that the implanted blood vessels are not yet capable of other functions, such as transporting nutrients and waste. “We still have a lot of work to do to improve these materials. This is a promising step toward the future of tissue regeneration and repair,” he said.

Moving forward, Chen and his team are working on building patient-specific tissues using human induced pluripotent stem cells, which would prevent transplants from being attacked by a patient’s immune system. And since these cells are derived from a patient’s skin cells, researchers won’t need to extract any cells from inside the body to build new tissue. The team’s ultimate goal is to move their work to clinical trials. “It will take at least several years before we reach that goal,” Chen said.

Source: University of California San Diego

Stryker chooses Microsoft HoloLens to design OR

Stryker has set out to improve the process for designing operating rooms for hospitals and surgery centers.

You may not be aware of it, but surgical disciplines from general, to urologic, orthopedic, cardiac, and ear nose and throat (ENT) use shared operating rooms. These specialties have widely different needs when it comes to operating room configuration and setup. Everything from lighting, to equipment, tools, and even patient orientation, varies depending on who is using the operating room at any given moment. Equipment placement is critical as it effects ergonomics, efficiency, and task load, all of which have the potential to burden staff and slow procedures.

Today, for hospitals to successfully design operating rooms that will accommodate these various medical disciplines, a critical meeting must take place. In this meeting, the heads of each surgical discipline, along with their staff, are physically present to outline the desired layout and implementation needed to successfully complete their procedures. This is a complicated and time-consuming process where people and a complex array of technology and equipment are shuffled around to determine what goes where, and when, to see how it will all fit.

Recognizing that the current model of operating room design needs to be evolved from 2D to 3D, and knowing that the needs of these specialties can be quite divergent, Stryker has found a way to design a shared operating room that can accommodate all surgical disciplines in a far more efficient manner.

Instead of needing all of the people from each surgical discipline, all the physical equipment required across all medical disciplines, all in one room at the same time, Stryker is now able to modify and build different operating room scenarios with holograms. No more time-consuming sessions where everyone needs to be physically present and no more need to move around heavy and expensive equipment to get a sense for how everything all fits together.

By / General Manager, Microsoft HoloLens and Windows Experiences

Source: Microsoft

A step forward in building functional human tissues

Human proximal tubule cells adhere to the hollow channel, forming a functional, 3D renal architecture. Credit: Lewis Lab/Wyss Institute at Harvard University
Human proximal tubule cells adhere to the hollow channel, forming a functional, 3D renal architecture. Credit: Lewis Lab/Wyss Institute at Harvard University

Toward the ultimate goal of engineering human tissues and organs that can mimic native function for use in drug screening, disease modeling, and regenerative medicine, a Wyss Institute team led by Core Faculty member Jennifer Lewis, Sc.D., has made another foundational advance using three-dimensional (3D) bioprinting.

Continue reading “A step forward in building functional human tissues”

3D Printing Customized Vascular Stents

Northwestern Engineering’s Guillermo Ameer and Cheng Sun have teamed up to use 3-D printing to develop flexible, biodegradable stents that are customized for a specific patient’s body.

“Right now, the vast majority of stents are made from a metal and have off-the-shelf availability in various sizes,” said Ameer, professor of biomedical engineering in Northwestern’s McCormick School of Engineering and professor of surgery in the Feinberg School of Medicine. “The physician has to guess which stent size is a good fit to keep the blood vessel open. But we’re all different and results are highly dependent on physician experience, so that’s not an optimal solution.”

Supported by the American Heart Association, the research is published online in the journal Advanced Materials Technologies. Robert van Lith, a postdoctoral fellow in Ameer’s laboratory, and Evan Baker, a graduate student in Sun’s laboratory, are co-first authors of the paper.

When ill-fitting stents move in the artery, they can ultimately fail. In these cases, physicians have to somehow re-open the blocked stent or bypass it with a vascular graft. It’s a costly and risky process.

“There are cases where a physician tries to stent a patient’s blood vessel, and the fit is not good,” Ameer said. “There might be geometric constraints in the patient’s vessel, such as a significant curvature that can disturb blood flow, causing traditional stents to fail. This is especially a problem for patients who have conditions that prevent the use of blood thinners, which are commonly given to patients who have stents. By printing a stent that has the exact geometric and biologic requirements of the patient’s blood vessel, we expect to minimize the probability of these complications.”

To create these customized stents, Ameer worked with Sun to adapt a 3-D printing technique, called projection micro-stereo-lithography, to fabricate stents using a polymer previously developed in Ameer’s lab. The technique uses a liquid photo-curable resin or polymer to print objects with light. When a pattern of light is shined on the polymer, it converts it into a solid that is then slowly displaced to cure the next layer of liquid polymer. The printing technology allows the team to fabricate a stent that precisely matches desirable design characteristics.

Sun’s 3-D printing technique, known as micro continuous liquid interface production (microCLIP), has several advantages. First, it is extremely high resolution. With the ability to print features as small as 7 microns, it is perfect for printing stents, which have very fine mesh dimensions and can be smaller than 3 millimeters in diameter. Second, it has the ability to print up to 100 stents at a time, producing them faster and potentially cheaper than traditional manufacturing methods. Third, it’s fast, printing a 4-centimeter stent in a matter of minutes.

Although current stents are made with metal wire mesh, Ameer used a citric-acid based polymer previously developed in his lab. The resulting stent is flexible, biodegradable, and has inherent antioxidant properties. Drugs can also be loaded onto the polymer and slowly released at the implantation site to improve the healing process in the blood vessel wall. Ameer has previously shown that the polymer can be engineered to inhibit clot formation when applied to vascular grafts. The stent is strong and biodegradable, allowing it to exercise its mechanical function during the vessel’s initial dilation and slowly dissolve as the re-opened blood vessel recovers.

“In theory, it’s safer because the patient doesn’t have permanent foreign metal devices in the body,” Ameer said. “If, for any reason in the future, the surgeon needs to go back in to that location in the vessel, they can. There’s not a metal stent in the way.”

Current biodegradable stents are made from plastics similar to those used for sutures. They are not as strong as wire mesh and can take longer than metal stents to fully expand when deployed. To compensate for this weakness, the plastic stents are strengthened by increasing the thickness of their struts relative to that of a metal stent. Ameer’s 3-D printed stent, however, can be fabricated with the thinner profile of traditional metal wire stents, so it is more compatible with the body.

Ameer and Sun, associate professor of mechanical engineering, imagine a future process whereby the dimensions of a patient’s vessel are obtained using standard imaging techniques available at hospitals, and a stent is then printed on site to exactly fit the vessel’s dimensions, packaged, and given to the surgeon for implantation. Next, Ameer plans to investigate how long it takes for his biodegradable stent to break down and absorb into the body. His team also aims to investigate innovative stent designs to improve their long-term performance.

“Not only can we customize the stent for a patient’s blood vessels,” he said, “but we can create all new types of patient-specific medical devices that could make the outcomes of surgical procedures better than what they are today.”

Source: Northwestern University

Promising biomaterial to build better bones with 3-D printing

A Northwestern University research team has developed a 3-D printable ink that produces a synthetic bone implant that rapidly induces bone regeneration and growth. This hyperelastic “bone” material, the shape of which can be easily customized, one day could be especially useful for the treatment of bone defects in children.

Bone implantation surgery is never an easy process, but it is particularly painful and complicated for children. With both adults and children, often times bone is harvested from elsewhere in the body to replace the missing bone, which can lead to other complications and pain. Metallic implants are sometimes used, but this is not a permanent fix for growing children.

“Adults have more options when it comes to implants,” said Ramille N. Shah, who led the research. “Pediatric patients do not. If you give them a permanent implant, you have to do more surgeries in the future as they grow. They might face years of difficulty.”

Source: Northwestern University