News

Wearable Artificial Lung to Be Developed

Picture: University of Pittsburgh

With the support of a $3.4 million National Institutes of Health grant, researchers at the University of Pittsburgh will develop an artificial lung to serve as a bridge to transplant or recovery in patients with acute and chronic lung failure.

“Our wearable lung will be designed to get patients up and moving within the hospital setting, which is important for both patient recovery and improving a patient’s status prior to a lung transplant,” said principal investigator William J. Federspiel, William Kepler Whiteford Professor of Bioengineering in Pitt’s Swanson School of Engineering and director of the Medical Devices Laboratory within the Pitt-UPMC McGowan Institute for Regenerative Medicine.

Current long-term breathing support modalities include extracorporeal membrane oxygenation (EMCO)—a cardiac and respiratory technique in which blood is drained from the body, oxygenated outside of it, and returned to the bloodstream. The drawback to EMCO is that it can significantly limit a patient’s mobility and, while mobile ambulatory EMCO systems are beginning to be used clinically, these systems involve unwieldy equipment.

“This project will develop a compact respiratory assist device called the Paracorporeal Ambulatory Assist Lung—known as PAAL—to replace the old techniques,” said Federspiel. “This is a wearable, fully integrated blood pump and lung designed to provide longer-term respiratory support up to one to three months while maintaining excellent blood compatibility.”

The PAAL device will complement recent efforts by the University of Maryland (which developed a wearable artificial pump-lung) by potentially improving the efficiency of the transfer of oxygen and carbon dioxide and increasing biocompatibility, Federspiel explained.

Federspiel’s colleagues on the project include William R. Wagner, director of the McGowan Institute as well as a professor of surgery, bioengineering, and chemical engineering in Pitt’s School of Medicine and Swanson School of Engineering; Christian Bermudez, assistant professor of surgery in Pitt’s School of Medicine and associate director of the cardiothoracic transplant division at UPMC; James Antaki, professor of biomedical engineering at Carnegie Mellon University; and Greg Burgreen, associate research professor of surgery at Mississippi State University.

Federspiel also is a founder and equity holder of Alung Technologies, a Pittsburgh-based medical start-up company, which provides advanced respiratory support solutions. He joined the University of Pittsburgh faculty in 1995 after receiving his PhD in chemical engineering from the University of Rochester.

Source: University of Pittsburgh

Share

Bovie COOL-COAG™ Generator and Open Handpiece FDA Cleared

Picture: Bovie Medical

Bovie Medical announced today that it has received 510K clearance from the FDA for a new J-Plasma® generator and handpiece that incorporate Cool-Coag™ technology.

Cool-Coag™ is a new technology that combines the unique benefits of J-Plasma®, namely increased precision with minimal thermal spread, with standard monopolar coagulation and helium spray coagulation capabilities, all in one handpiece. This allows the surgeon to benefit from using a single device that offers the greater control of tissue effect that J-Plasma® delivers, while being able to switch to a monopolar or helium spray coagulation mode with just the push of a button.

“The development of Bovie’s Cool-Coag™ technology is a direct result of feedback from surgeons who have used our J-Plasma® product for procedures that require greater coagulation capability, specifically in the areas of gynecologic oncology and surgical oncology,” said Robert L. Gershon, Chief Executive Officer. “The unique flexibility of Cool-Coag™ enables the surgeon to use J-Plasma® to perform the most delicate procedures, where precision and low risk of injury to surrounding tissue are paramount and also have the full power of monopolar coagulation to control, pinpoint and diffuse bleeding as needed.”

“This new Cool-Coag™ technology has the potential to increase usage of the J-Plasma® device in many of our most complex cancer procedures. It combines J-Plasma®’s ability to be used close to vital structures with minimal collateral damage and standard full monopolar coagulation capability, all in one hand-held instrument.  Cool-Coag™ may also expand the use of J-Plasma® in additional procedures and specialties,” said Dr. Dennis Chi, head of the Ovarian Cancer Surgery at Memorial Sloan Kettering Cancer Center in New York City.

“We are pleased with our ability to continue to provide innovation that meets the needs of surgeons and are confident in the substantial growth opportunity for J-Plasma® as we continue to penetrate the market,” Mr. Gershon noted.

Share

Portable retina camera not requiring dilating prototyped

Photo: University of Illinois

It’s the part of the eye exam everyone hates: the pupil-dilating eye drops. The drops work by opening the pupil and preventing the iris from constricting in response to light and are often used for routine examination and photography of the back of the eye. The drops sting, can take up to 30 minutes to work, and cause blurry vision for several hours afterwards, often making them inconvenient for both patient and doctor.

Now, researchers at the University of Illinois at Chicago College of Medicine and Massachusetts Eye and Ear/Harvard Medical School have developed a cheap, portable camera that can photograph the retina without the need for pupil-dilating eye drops. Made out of simple parts mostly available online, the camera’s total cost is about $185.

“As residents seeing patients in the hospital, there are often times when we are not allowed to dilate patients — neurosurgery patients for example,” said Dr. Bailey Shen, a second-year ophthalmology resident at the UIC College of Medicine. “Also, there are times when we find something abnormal in the back of the eye, but it is not practical to wheel the patient all the way over to the outpatient eye clinic just for a photograph.”

The prototype camera can be carried in your pocket, Shen said, and can take pictures of the back of the eye without eye drops. The pictures can be shared with other doctors, or attached to the patient’s medical record.

The camera is based on the Raspberry Pi 2 computer, a low-cost, single-board computer designed to teach children how to build and program computers. The board hooks up to a small, cheap infrared camera, and a dual infrared- and white-light-emitting diode. A handful of other components – a lens, a small display screen and several cables – make up the rest of the camera.

The camera works by first emitting infrared light, which the iris – the muscle that controls the opening of the pupil – does not react to. Most retina cameras use white light, which is why pupil-dilating eye drops are needed.

The infrared light is used to focus the camera on the retina, which can take a few seconds. Once focused, a quick flash of white light is delivered as the picture is taken. Cameras exist that use this same infrared/white light technique, but they are bulky and often cost thousands of dollars.

Shen’s camera photos show the retina and its blood supply as well as the portion of the optic nerve that leads into the retina. It can reveal health issues that include diabetes, glaucoma and elevated pressure around the brain.

Shen and his co-author, Dr. Shizuo Mukai, associate professor of ophthalmology at Harvard Medical School and a retina surgeon at Massachusetts Eye and Ear, describe their camera and provide a shopping list of parts, instructions for assembly, and the code needed to program the camera in the Journal of Ophthalmology.

“This is an open-source device that is cheap and easy to build,” said Mukai. “We expect that others who build our camera will add their own improvements and innovations.”

“The device is currently just a prototype, but it shows that it is possible to build a cheap camera capable of taking quality pictures of the retina without dilating eye drops, “ Shen said. “It would be cool someday if this device or something similar was carried around in the white-coat pockets of every ophthalmology resident and used by physicians outside of ophthalmology as well.”

Source: University of Illinois

Share

Smartphone based portable DNA detection system

Photo: UCLA

Researchers at UCLA have developed an improved method to detect the presence of DNA biomarkers of disease that is compatible with use outside of a hospital or lab setting. The new technique leverages the sensors and optics of cellphones to read light produced by a new detector dye mixture that reports the presence of DNA molecules with a signal that is more than 10-times brighter.

Nucleic acids, such as DNA or RNA, are used in tests for infectious diseases, genetic disorders, cancer mutations that can be targeted by specific drugs, and fetal abnormality tests. The samples used in standard diagnostic tests typically contain only tiny amounts of a disease’s related nucleic acids. To assist optical detection, clinicians amplify the number of nucleic acids making them easier to find with the fluorescent dyes.

Both the amplification and the optical detection steps have in the past required costly and bulky equipment, largely limiting their use to laboratories.

In a study published online in the journal ACS Nano, researchers from three UCLA entities — the Henry Samueli School of Engineering and Applied Science, the California NanoSystems Institute, and the David Geffen School of Medicine — showed how to take detection out of the lab and for a fraction of the cost.

The collaborative team of researchers included lead author Janay Kong, a UCLA Ph.D. student in bioengineering; Qingshan Wei, a post-doctoral researcher in electrical engineering; Aydogan Ozcan, Chancellor’s Professor of Electrical Engineering and Bioengineering; Dino Di Carlo, professor of bioengineering and mechanical and aerospace engineering; and Omai Garner, assistant professor of pathology and medicine at the David Geffen School of Medicine at UCLA.

The UCLA researchers focused on the challenges with low-cost optical detection. Small changes in light emitted from molecules that associate with DNA, called intercalator dyes, are used to identify DNA amplification, but these dyes are unstable and their changes are too dim for standard cellphone camera sensors.

But the team discovered an additive that stabilized the intercalator dyes and generated a large increase in fluorescent signal above the background light level, enabling the test to be integrated with inexpensive cellphone based detection methods. The combined novel dye/cellphone reader system achieved comparable results to equipment costing tens of thousands of dollars more.

To adapt a cellphone to detect the light produced from dyes associated with amplified DNA while those samples are in standard laboratory containers, such as well plates, the team developed a cost-effective, field-portable fiber optic bundle. The fibers in the bundle routed the signal from each well in the plate to a unique location of the camera sensor area. This handheld reader is able to provide comparable results to standard benchtop readers, but at a fraction of the cost, which the authors suggest is a promising sign that the reader could be applied to other fluorescence-based diagnostic tests.

“Currently nucleic acid amplification tests have issues generating a stable and high signal, which often necessitates the use of calibration dyes and samples which can be limiting for point-of-care use,” Di Carlo said. “The unique dye combination overcomes these issues and is able to generate a thermally stable signal, with a much higher signal to noise ratio. The DNA amplification curves we see look beautiful — without any of the normalization and calibration, which is usually performed, to get to the point that we start at.”

Additionally, the authors emphasized that the dye combinations discovered should be able to be used universally to detect any nucleic acid amplification, allowing for their use in a multitude of other amplification approaches and tests.

The team demonstrated the approach using a process called loop-mediated isothermal amplification, or LAMP, with DNA from lambda phage as the target molecule, as a proof of concept, and now plan to adapt the assay to complex clinical samples and nucleic acids associated with pathogens such as influenza.

The newest demonstration is part of a suite of technologies aimed at democratizing disease diagnosis developed by the UCLA team. Including low-cost optical readout and diagnostics based on consumer-electronic devices, microfluidic-based automation and molecular assays leveraging DNA nanotechnology.

Source: UCLA

Share

Non-invasive prostate cancer diagnosing and monitoring

Photo: Washington State University

Technology being developed at Washington State University provides a non-invasive approach for diagnosing prostate cancer and tracking the disease’s progression.

The innovative filter-like device isolates prostate cancer indicators from other cellular information in blood and urine. It could enable doctors to determine how cancer patients are responding to different treatments without needing to perform invasive biopsies.

Guidance for effective treatment

The WSU research team fitted a mat of tiny glass springs with specially designed biomarkers that attract the fatty droplets of proteins and RNA that tumor cells shed into body fluids. The droplets, called exosomes, contain genetic information that can be analyzed to determine a cancer’s molecular composition, even how far it has advanced.

“It may be possible to predict which drugs would be most effective in treating a patient’s cancer,” said WSU chemistry professor Clifford Berkman, who led the design of the biomarkers. “More broadly, this technology could be expanded to other types of cancers and diseases.”

Writing in Springer’s Journal of Materials Science, Berkman, Parissa Ziaei, a Ph.D. student in the interdisciplinary materials science and engineering program, and Grant Norton, professor of mechanical and materials engineering, said their capture technique is more efficient than previous approaches at isolating prostate tumor exosomes from other bits and pieces of cellular information.

The researchers are working on designs for a version of their filter-like device for use in a clinical setting.

A non-invasive alternative to biopsy

Prostate cancer can be a serious disease, but most men diagnosed with prostate cancer do not die from it. In fact, more than 2.9 million men in the United States who have been diagnosed with prostate cancer at some point are still alive today, according to the American Cancer Society.

The fact that prostate cancer can remain in a human for years before spreading to other organs makes monitoring its progression and response to treatment an important, long-term process.

A biopsy, a procedure in which small samples of the prostate are removed with a needle, is sometimes performed on a patient if blood tests reveal abnormalities that indicate the presence of prostate cancer. Biopsies are also performed to track the progression of the disease and how it is responding to treatment. The biopsy is generally safe but sometimes leads to bleeding or infection.

The WSU exosome capture technique could provide a reliable and non-invasive alternative to biopsy.

“Say you have a urine sample from a patient known to have prostate cancer. You could pass the urine through the device we are in the process of putting together and measure the number of exosomes that are specifically from prostate cancer cells,” Norton said. “The physician would propose a treatment plan and the amount of exosomes in a follow-up urine sample would indicate how effective the treatment was.”

Possibilities for detecting other cancers

In addition to helping doctors monitor the progression of prostate cancer, the WSU researchers hope their new approach can be applied to help treat patients with other forms of cancer and disease. The filter-like mat of glass nanosprings synthesized in Norton’s lab could feasibly be fitted with a wide array of biomarkers to attract cancer exosomes in urine, blood and other bodily fluids.

“It wouldn’t be a big step to imagine applying what we are doing now to breast cancer or pancreatic cancer,” Norton said. “It opens up all kinds of exciting possibilities.”

The research supports WSU’s Grand Challenges – initiatives aimed at particularly pressing societal concerns. It is particularly relevant to the challenge of sustaining health and changing the course of disease.

Source: Washington State University

Share

Discovery of a rare muscle disorder

Dr. Andreas Unger (L) and Prof. Dr. Matthias Vorgerd (R)

Muscle weakness in the legs, an unsteady gait, permanent risk of stumbling – symptoms such as these are common in people suffering from muscle disorders. However, the patient who came to the university clinic Bergmannsheil with these health conditions didn’t match any known diagnosis. Following thorough examinations, the Bochum-based doctors realised that they were dealing with an entirely new disease.

“We carried out numerous additional diagnostic investigations,” explains Prof Dr Matthias Vorgerd from the Neurological Clinic Bergmannsheil. “But we were not able to isolate the responsible gene or protein at first.” As other members of the patient’s family were likewise affected, the doctors assumed the disease was a hereditary one; together with private lecturer Dr Sabine Hoffjan from the RUB Human Genetics Department, they initiated detailed genetic analysis – and made a discovery. The BICD2 gene was altered in all patients. The cause was subsequently verified after a second affected family had been examined.

BICD2 had been known to be a trigger of diseases – but nobody had yet described a BICD2 syndrome that manifested itself in altered skeletal muscles. The problem always originated from the nervous system. Now, doctors observed pathological changes in the lower leg and femoral muscles, whereas no changes were identified in the nervous system. Matthias Vorgerd decided to get to the bottom of this new muscle disorder. “It is important to describe the disease as thoroughly as possible, in order to arrive at statements regarding the heredity process, progression, and therapy options,” explains the neurologist. He additionally consulted the research group headed by Prof Dr Wolfgang Linke from the RUB Institute of Physiology.

The physiologists under the auspices of Dr Andreas Unger performed various lab tests to analyse cells from the biopsies of affected patients. Initially they recorded high-resolution images with the electron microscope. These images showed significant alterations in the normally very orderly arranged muscle structure. Myofibrils, basic components of muscle fibres, were observed with degenerations, other cell organelles were likewise affected. Mitochondria, the energy suppliers of cells, appeared with different shape and the Golgi apparatus, a post office for protein sorting, was larger and more dispersed than normally.

What is known is: when the pathologically changed BICD2 gene is translated into a protein, one single wrong amino acid is built in due to the defect in the genome. It doesn’t take more than that to strongly impair the function of the protein. The mutation is dominant; individuals whose chromosome in a chromosome pair carries a pathological mutation will develop the disease.

Source: Ruhr-Universität Bochum

Share